
The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019 217

Parallel Batch Dynamic Single Source Shortest

Path Algorithm and Its Implementation on GPU

based Machine

Dhirendra Singh and Nilay Khare

Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, India

Abstract: In this fast changing and uncertain world, to meet the user’s requirements the computer applications based on real

world data always try to give responses in the minimum possible time. Single Source Shortest Path (SSSP) calculation is a

basic requirement of applications using graphs portraying real world data like social networks and road networks etc. to get

useful information from them. Some of these real world data changes very frequently, so recalculation of the shortest path for

all nodes of a graph depicting these real world data after small updates of graph structure is an expensive process. To

minimize the cost of recalculation shortest path algorithms need to process only the affected part of a graph after any update,

and to speed-up any process parallel implementation of algorithm is a frequently used technique. This paper proposes a new

parallel batch dynamic SSSP calculation approach and shows its implementation on a CPU- Graphic Processing Unit (GPU)

based hybrid machine. The proposed algorithm is defined for positive edge weighted graphs. It accepts multiple edge weight

updates simultaneously. It uses parallel modified Bellman Ford algorithm for SSSP recalculation of all affected nodes.

Nvidia’s Tesla C2075 GPU is used to run the parallel implementation of the algorithm. The proposed parallel algorithm

shows up to a twenty-fold speed increase as compared to best serial algorithm available in literature.

Keywords: Parallel algorithm, graph algorithm, dynamic shortest path algorithm, network algorithm.

Received December 20, 2014; accepted October 30, 2016

1. Introduction

Graphs are the most common way to represent data in

many scientific and engineering applications, such as

routing in social networks [21], road network routing

[11, 13], internet routing [18], robotics [1, 23] etc.,

Recently, researchers have also started developing

software systems for graph algorithms to provide

effective computational tools to support application

prototyping, algorithm animation or further algorithmic

research [29]. A directed graph with positive edge

weights is defined as G = (V, E), where V = {v1, v2,

v3…….} represents set of vertices or nodes and E = {e1,

e2, e3 ……} represents set of edges. An edge e ∈ E of

graph is represented by an ordered pair of nodes (v1,

v2), where v1 is start node and v2 is end node of the

edge. One of the most studied problems in graphs is

the shortest path problem. On the basis of nodes that

participate in shortest path calculation, it can be

categorized as: the single-pair shortest path problem,

the single-source shortest path problem and the all-pair

shortest path problem. The Single Source Shortest Path

(SSSP) problem searches for shortest paths from node

s∈ V to all other nodes of the graph G. These problems

can be further classified in terms of static graph

problems and dynamic graph problems. Many static

and dynamic SSSP algorithms are defined to solve

these problems. In static SSSP algorithms, when a

graph is updated, the shortest path is recomputed from

scratch, which is clearly inefficient as they do not use

available information, while dynamic Single Source

Shortest Path (SSSP) algorithms update graphs from

some intermediate point using previously computed

information. Two types of updates are possible in any

graph. The first is the edge weight increase and second

is the edge weight decrease. Edge insertion and edge

deletion are considered as special cases of weight

decrease and weight increase respectively. Algorithms

having a provision for both edge weight increase and

decrease are called fully dynamic, while if they support

only one type of update at a time they are called semi-

dynamic. The algorithm which supports both types of

update simultaneously is called the batch dynamic

algorithm.

Rest of the paper is organized in following manner;

section 2 summarizes some previous works related to

our research. Section 3 describes graph structure used

by proposed implementation of algorithm. Section 4

formally introduces the problem and explains the

proposed algorithm. Section 5 discusses about

essentials of Graphic Processing Unit (GPU)

programming using Compute Unified Device

Architecture (CUDA). Section 6 shows parallel

implementations of batch dynamic single source

shortest path algorithm. The algorithms are tested on a

range of standard datasets, their results and discussions

are present in section 7. Concluding remarks are given

in section 8.

218 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

2. Related Works

There are various serial dynamic algorithms in

literature, which perform dynamic update on shortest

path and handle multiple edge updates simultaneously.

Reps and Ramalingam [32] have introduced the batch

algorithm SWSF-FP that handles edge insertions and

deletions iteratively. It uses the Dijkstra’s [12]

algorithm for SSSP calculation and considers the end

node of an updated edge as affected node. The most

important operation used by this algorithm is Con(v)

for node v, in which it relaxes all edges where affected

node v is the end node of the edge. Initially it

calculates SSSP for all nodes by using the Dijkstra’s

algorithm then inserts the new weight of updated

edges. Dynamic calculations of SSSP calculate the

Con(v) value of all affected nodes and insert each

affected node in queue if their weight gets changed. It

removes the minimum weighted node from the queue

and calculates the Con(v) for all end node v of the

edges where the node removed from the queue is the

start node of edge. If the node weight of v gets

updated, put it in queue and repeat these last two

operations until queue is not empty.

Narva ́ez et al. [27] have proposed the Narva ́ez-

framework that allows implementing a variety of

dynamic shortest path algorithms including the well-

known Dijkstra, Bellman-Ford, D’Esopo–Pape

algorithms. Frigioni et al. [15] have proposed an

iterative algorithm that uses more complex auxiliary

data and accounting function. Ramalingam et al. [31]

have explored a different way to analyses the

complexity of dynamic algorithms which measures

cost in terms of sum of changes in input and output.

Buriol et al. [7] presented a technique to reduce heap

sizes used by several dynamic shortest path algorithms.

King and Thorup [20] have proposed a technique that

reduces space and work performed during computation

of shortest path by maintaining a special shortest path

tree. Misra and Ommen [26] have presented a learning

automata based solution for dynamic SSSP calculation.

They have shown that after using the learning automata

if any edge weight change occurs, their solution does

not probe all the edges of the graph.

 Bauer and Wagner [2] have presented faster tuned

variants of existing SWSF-FP [32]. It performs

different operations after removing any node from

queue according to its new weight. After removing the

minimum weighted node v from the queue, if node’s

new weight is less than its old weight then for all end

node w of the edges where v is the start node perform

Con(w) and if any node weight is updated, it will be

inserted in queue. If node’s new weight is greater than

its old weight then for all end node w of the edges

which are the part of shortest path sub-graph and v is

the start node of edge performs Con(w) and if any

node’s weight gets updated, it will be inserted in

queue. It repeats these operations until queue is not

empty.

When a large graph with, say one million vertices, is

updated with small changes, an enormous amount of

arithmetic computation has to perform in serial on

mentioned algorithms, which is really very time

consuming and tedious. To speed up the SSSP

calculation many researchers have proposed the

various parallel implementations [4, 8, 9, 36] of it for

different type of machines. With the help of Nvidia’s

CUDA tool it is possible to explore the parallel and

multithreaded environment of its today’s GPU for

general purpose computing. Today’s GPU has

provided a low cost and highly parallel platform for

general purpose computing [6, 17, 33, 35], so many

researchers have used GPUs for their parallel shortest

path calculation. Harish and Narayanan [16] have

presented first parallel implementations of SSSP on

GPUs using CUDA. Their algorithm calculates the

SSSP of a million vertices graph in 1-2 seconds. Katz

and Kider [19] have presented an algorithm for the All

Pair Shortest Path Problem on large graphs by using

multiple GPUs. Martín et al. [24] have shown different

parallel implementations for well-known Dijkstra’s

algorithm [12] on GPU. Dashora and Khare [10] have

also presented parallel SSSP and other graph

algorithms on GPU. Singh and Khare [34] have

proposed two different parallel implementations of

modified Dijkstra’s algorithm [34] for GPU based

machine. Many all pair shortest path [5, 25, 37]

implementations also have been proposed for GPU

based machines. In this paper first parallel batch

dynamic SSSP algorithm have been proposed to

enhance the performance and reducing the execution

time of recalculation of affected nodes weight and its

implementation is shown for GPU based machine.

3. Graph Representations

A graph G=(V, E) can be represented by adjacency list,

adjacency matrix, hash tables and unordered edge

sequences etc. Out of which hash tables are efficient on

CPU, but GPU memory layout is optimised for

rendering graphics and cannot support user-defined

data structures efficiently [30]. In GPU computing

most common graph representations are adjacency list

with memory requirement of O(│V│+│E│) as there is

no wasted information, but more expensive lookup

time. The adjacency matrix having more memory

usage O(│V│2) but has an advantage of O(1) lookup

time. The unordered edge sequence requires

O(│E│+│E│) memory with O(│E│) navigation time.

 Proposed algorithm and its implementations use

two different graph representations. The first graph

representation is adjacency list similar to the

representation proposed by Harish and Narayanan [16].

This adjacency list data structure consists of three

arrays, array of node (V) of size |V| + 1, array of edge

(E) of size |E| and array of edge weight (W) of size |E|.

Parallel Batch Dynamic Single Source Shortest Path Algorithm and ... 219

Each index of array V represents a node number of

graph and array E stores the end node number of all the

edges in graph. The array E stores the end nodes

number of the all outgoing edges of a node in

sequential order. Array W stores the edge weight of all

edges in the graph. Weight of an edge (i, j) is stored at

the same index, where node j is stored in array E.

The second graph representation is unordered edge

sequence; it uses three arrays; array Edge Start Node

(ESN) which stores the start node of each edge, array

Edge End Node (EEN) which stores the end node of

each edge and array Edge Weight (EW), which stores

the weight of each edge, all of size |E|.

4. Proposed Parallel Dynamic SSSP

Algorithm

Let G= (V, E) be a directed graph having |V| nodes and

|E| edges. A positive weight function assigns a weight

to each edge of the graph. Given source node s∈ V, for

a node v∈ V, NW[v] represents its distance from the

source node in SSSP calculation. For any edge (u, v) ∈

E, edge relaxation operation updates the NW[v] out of

minimum of NW[v] or NW[u] + W (u, v). For a node

v∈ V, edge (u, v) ∈ E is responsible edge, if NW[v] =

NW[u] + W (u, v) after SSSP calculation. Responsible

edge of a node v∈ V is denoted by Resp[v](u, v) ∈

E. After SSSP calculation in a graph from given source

node s, Shortest Path sub Tree (SPT) is a subset of

graph having all the nodes reachable from s and their

responsible edges. Node v is called an affected node if

after the update of edge (u, v) weight NW[v] is also

updated.

Dynamic single source shortest path algorithm re-

computes the shortest path for all affected nodes in

updated graph. When G is undergoing through batch

update U= {U1, U2, U3, …., Uk}, where each Ui∈ U is in

the form of triplet (u, v, Wnew) consisting edge start

node u, edge end node v and new edge weight Wnew. A

node v∈ V is possible affected node if (u, v) ∈ U. After

the edge weight update in any graph possible affected

nodes are defined as shown in Lemma.

 Lemma: All nodes of sub-graph reachable form the

affected node are possible victim of graph update.

 Proof: After the calculation of the SSSP in the

graph, sub-graph whose nodes are reachable from

the affected will have two parts:

1. Nodes which are parts of the SPT with root node as

affected node.

2. Nodes which are not parts of the SPT with root node

as affected node.

Suppose i is an affected node and there are two edges

(i, j) and (j, k) in SPT

if NW[j] = NW[i] + W[i, j] and

NW[k] = NW[j] + W[j, k]

then NW[k] = NW[i] + W[i, j] + W[j, k]

From Equations (1) and (2) it is clear that the weight of

node j and k depends on node weight of node i, so node

j and k are also affected nodes. With the help of

affected nodes j and k other affected nodes will be

discovered in SPT with root as node i.

 Let an edge (x, y) ∈ E and y be not the part of SPT

and suppose after the recalculation of the node weight

of the affected node x, if NW[y] > NW[x] + W[x, y],

the new weight of y should be NW[y] = NW[x] + W[x,

y], so y is also an affected node.

Algorithm 1 shows the proposed parallel batch

dynamic SSSP algorithm for a given graph G(V, E).

Suppose SSSP has been calculated and node weight are

stored in NW[v] for all nodes v∈ V. Responsible edge

for each node in SPT are calculated and store in array

Resp[v] for all nodes v∈ V. Define a Flag arrays of size

|V| initialise it’s all elements with zero. It used to

maintain updated node list.

 Step 1: for all edges (u, v) ∈ E, in parallel compare

the W(u, v) with Wnew(u, v), if for any edge (u, v) ∈

E the new edge weight is greater than the old edge

weight and (u, v) ∈ SPT then add the node v to

discover node list and make the NW[v] to infinity. If

for any edge the new edge weight is less than the

old edge weight then relax this edge. After the edge

relaxation if its end node weight is updated then add

this node to updated node list.

Algorithm 1: Dynamic SSSP Algorithm (G, U, NW, Source

node)

Input

G (V, E, W): A graph with │V│ vertices │E│edges and edge

length W.

U (u, v, Wnew): A set of updates in edge (u, v) with Wnew.

NW[v]: Permanent shortest distance from source to node v.

Rep[v]: Edge responsible for node v weight

Boolean variables: Loop and Loop1 initialised with 1and

Flag array of size |V|, initialised with zero.

begin

Step 1: for all (u, v) ∈ U do in parallel

 if W(u, v) < Wnew (u, v) && Rep[v]= = E(u, v) then

 NW[v]=∞

 Flag[v] = 1

 end if

 if W(u, v) > Wnew (u, v) then

 if NW[v] < NW[u] + Wnew (u, v) then

 NW[v] = NW[u] + Wnew (u, v))

 Flag[v] =1

 end if

 end if

 end for

Step 2: while Loop > 0 do

 for all (u, v) ∈ E do in parallel

 Loop=0

 if NW[u]= = ∞ && Rep[v]= = E(u, v) then

 NW[v] = ∞

 Flag[v] = 1

 Loop = 1

 end if
(1)

(2)

220 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

 end for

 end while

Step 3: for all (u, v) ∈ E do in parallel

 if NW[v]= = ∞ then

 if NW[v] > NW[u] + Wnew (u, v) then

 NW[v] = NW[u] + Wnew (u, v)

 end if

 end if

 end for

Step 4: while Loop1> 0 do

 for all v ∈ V do in parallel

 Loop1=0

 if Flag[v]=1 then

 for all (v, u) ∈ E do

 if NW[u] < NW[v] + Wnew (v, u) then

 NW[u] = NW[v] + Wnew (v, u)

 Flag[u] =1

 Loop1 = 1

 end if

 end for

 end if

 end for

 end while

end

 Step 2: parallel traverse the SPT for all those nodes

whose node weight is infinity and make the all

discovered node v, node weight infinity.For any

edge (u, v) ∈ E, if NW[u] = infinity and Resp[v] is

the edge number for edge (u, v) ∈ E.

 Step 3: parallel relax all the edges whose end weight

are infinity and if due to the edge relaxation end

node weight is updated then add it to the updated

node list.

 Step 4: parallel check all the nodes, if any node is

part of the updated node list, then relax all the

outgoing edges of the node and remove this node

from the updated node list. If after the edge

relaxation end node weight is updated then add end

node to the updated node list. Algorithm 1 repeats

the step 4 until updated node list is not empty.

4.1. Complexity Analysis

The proposed parallel dynamic SSSP algorithm is a

batch dynamic algorithm, but here the complexity

analysis of this algorithm is defined for two different

cases; first when the single edge weight is increased

and second when the single edge weight is decreased.

Complexity is defined in terms of how much time the

algorithm takes to update the node weight of all

affected nodes after any edge weight update.

Suppose for a graph G (V, E), |V| is the number of

nodes, |E| is the number of edges where |E| > |V| and d

is the average degree of G. After the initial SSSP

calculation, the SPT also has degree d. We have |E|

processors and total numbers of affected nodes are

represented as |affected|. Now, let us analyse the

algorithm step by step to reveal its complexity.

4.1.1. Edge Weight Increase

After the single edge weight increase in Algorithm 1

step 1 takes a constant time to process with |E|

processors. Each iteration of step 2 takes a constant

time to process with |E| processors and it can iterate

O(logd |Affected|) times. Step 3 takes a constant time to

relax all edges having end node weight infinity with |E|

processors. Each iteration of step 4 can work O(d) jobs

and it can also iterate O(logd|Affected|) times. So the

complexity of the algorithm in the case of edge weight

increase is O(d* logd |Affected|).

4.1.2. Edge Weight Decrease

After the single edge weight decrease in Algorithm 1

Steps1, 2, and 3 take a constant time to process with |E|

processors. Each iteration of step 4 can work O(d) jobs

and it can also iterate O(logd |Affected|) times. So the

complexity of the algorithm in case of an edge weight

decrease is O(d* logd |Affected|).

5. CUDA Programming Model

Compute Unified Device Architecture (CUDA) is a

general purpose parallel programming interface which

was introduced by Nvidia [30] for its GPU and it

comes with a software environment which uses C as a

high level programming language [28]. Using CUDA,

the Nvidia’s GPUs are available for general purpose

parallel computations. The approach of solving

general-purpose (i.e., not exclusively graphics)

problems on GPUs is known as General Purpose

Graphics Processing Unit (GPGPU). As can be seen

from Figure 1-a GPU is collection of one or more

Symmetric Multiprocessors (SM) and each SM has a

set of processors, shared memory and instruction unit.

Each processor of SM can access the shared memory.

Each processor has its private register memory and can

access the device memory implemented in external

DRAM. This device memory has three parts: global,

constant and texture memory. Constant and texture

memories are read-only memory but the global

memory can be used for both read and write purposes.

CUDA programming involves running code on two

different platforms: a host system with one or more

CPU cores and one or more CUDA-enabled NVIDIA

GPUs. The CUDA program defines kernel, a set of

instructions that will be executed in parallel on

different data items. The data is copied from host

memory to device memory, then the kernel is executed

and data is copied back to the host memory. For the

kernel execution CUDA program creates multiple

threads execute the kernel function parallel on different

data items.

A thread grid is assigned to the GPU for processing.

The grid is a collection of thread blocks, which can be

arranged in a one, two or three-dimensional way inside

the grid. Blocks are a collection of threads, which can

Parallel Batch Dynamic Single Source Shortest Path Algorithm and ... 221

be arranged in a one, two or three-dimensional way

inside the block. Each thread in a block and each block

in a grid is assigned a unique index for each dimension

of its logical arrangement. These unique indexes are

used to generate the reference for the data items on

which a thread has to work.

 Figure1. Device understanding of CUDA.

 Each block of a grid is assigned to a unique SM,

and multiple blocks can be assigned to a SM. The SM

divides the set of threads of its assigned blocks into a

set of 32 threads called a warp. The threads present in

any warp are executed concurrently and the threads of

all blocks assigned to an SM are executed

concurrently. Out of all warps present in an SM, warp

scheduler randomly selects a warp for execution that

has threads ready to execute its next instruction. The

instruction unit presents inside the SM issues one

instruction at a time which is executed by all the

threads of the selected warp in parallel.

6. Parallel Implementation of Proposed

Algorithm

This section explains the parallel implementation of

the proposed algorithm for a GPU-based machine

using CUDA. It uses an efficient and consistent variant

of a GPU-based parallel SSSP algorithm proposed by

Harish and Narayanan [16] for the initial node weight

calculation for each node of the graph from a given

source node. After the initial SSSP calculation it

calculates the responsible edge for each node’s

minimum weight in the SPT.

Let a set of changes U, in the graph edge weight be

applied. After these changes, to recalculate the SSSP

the parallel batch dynamic algorithm is given in

Algorithm 2. It uses an array NEW to store the updated

edge weights and previous weights for unaffected

edges. It uses four kernel functions for dynamic SSSP

calculations, defined as EFFE_NODE, FIND_NODE,

EDGE_RELAX and RELAX for CUDA

implementation.

Algorithm 2: Dynamic SSSP (G, NW, Resp, U)

Create an affected node array, Aff and new edge weight array,

NEW of size |V|

NEW contains the copy of EW.

U (u, v, lennew): A set of updates in edge (u, v) with lennew

Create an array Flag of size |V|, two Boolean variables Loop

and Lock and a variable INFI contains very big number.

begin

[1] Update the new edge weight of affected edges in

array NEW

[2] FFE_NODE(Flag, Resp, NW, Aff, INFI, EW, NEW,

EEN, ESN) for each vertex e E in parallel

[3] while Loop > 0 do

[4] Loop=0

[5] FIND_NODE(NW, ESN, EEN, Resp, Aff, Flag, INFI,

Loop) for each edge e E in parallel

[6] end while

[7] EDGE_RELAX(Aff, NW, ESN, EEN, EW) for each

edge e E in parallel

[8] Lock=1

[9] while Lock > 0 do

[10] Lock=0

[11] RELAX(N, ENN, NW, NEW, Flag, Lock) for each

vertex v V in parallel

[12] end while

end

After storing the updated edge weights in array NEW,

Algorithm 2 calls the Kernel 1 EFFE_NODE kernel to

find the nodes which are affected by this change in the

graph. It creates |E| threads, one for each edge of the

graph to call this kernel. Each thread of this kernel

checks if its assigned edge’s new weight is greater than

its old weight and if the edge is the responsible edge of

its end node. Then the edge end node weight is set to

infinity, node is marked affected and its flag value is

set. If the new weight is less than the old weight then

this edge is relaxed and if the edge end node weight is

updated after the relax operation then the flag value

corresponding to this node is set.

Kernel 1: EFFE_NODE (Flag, Resp, NW, Aff, INFI, EW, NEW,

EEN, ESN)

begin

[1] id = getThreadID

[2] if EW[id]!= NEW[id] then

[3] if EW[id] < NEW[id] then

[4] if Resp[EEN[id]] = = id then

[5] NW [EEN [id]] =INFI

[6] Aff[EEN[id]] =1

[7] Flag [EEN [id]] =1

[8] Else

[9] if(NW[EEN[id]] > (NW[ESN[id]]+ EW[id]))

then

[10] begin ATOMIC

[11] NW[EEN[id]]=(NW[ESN[id]]+ NEW[id]))

[12] end ATOMIC

[13] Flag[EEN[id]] =1

[14] end if

[15] end if

[16] end if

end

222 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

After finding the initial affected nodes, Algorithm 2

calls the Kernel 2 FIND_NODE to discover all

possible affected nodes. It creates |E| threads to call the

Kernel 2 one thread corresponding to each edge of the

graph. Each thread checks that its assigned edge start

node weight is infinity and it is the responsible edge

for its end node and the edge end node is marked as not

affected, then it sets the end node weight to infinity

and marks it as affected and sets its flag value.

Algorithm 2 will call Kernel 2 again, if it will find an

affected node in kernel’s current iteration.

 After discovering all nodes possibly affected due to

edge weight increase, Algorithm 2 calls the Kernel 3

EDGE_RELAX to calculate the temporary weights of

the affected nodes. It creates |E| threads, one

corresponding to each edge of the graph. Each thread

relaxes its assigned edge if the edge end node is

marked as affected. This edge relaxation operation is

an atomic operation as multiple threads can try to

update the weight of the same node.

Kernel 2: FIND_NODE (NW, ESN, EEN, Resp, Aff, Flag, INFI,

Loop)

begin

[1] id = getThreadID

[2] if NW[ESN[id]]= =INFI AND Resp[EEN[id]]

= =id then

[3] if Affected [EEN[id]] = = 0 then

[4] NW [EEN [id]] = INFI

[5] Aff [EEN [id]] = 1

[6] Flag [EEN [id]] =1

[7] Loop=1

[8] end if

[9] end if

end

Kernel 3: EDGE_RELAX (Aff, NW, ESN, EEN, EW)

begin

[1] id = getThreadID

[2] if Aff[EEN[id]] = = 1 then

[3] begin ATOMIC

[4] if(NW[EEN[id]]>(NW[ESN[id]] + NEW[id]))

then

[5] NW[EEN[id]]=(NW[ESN[id]] + NEW[id]))

[6] end ATOMIC

[7] end if

end

Lastly, Algorithm 2 calls Kernel 4 RELAX to find the

final node weight of all affected nodes. It creates |V|

threads to call the Kernel 4 one corresponding to each

node of the graph. Each thread checks its assigned

node’s Flag value, and if it is set then all the outgoing

edges of this node are relaxed. After any edge

relaxation, if its end node weight is updated then the

Flag value corresponding to the node is set. Algorithm

2 calls the Kernel 4 again, if there is any weight change

in kernel’s current iteration.

Kernel 4: RELAX (N, ENN, NW, NEW, Flag, Lock)

begin

[1] id = getThreadID

[2] if Flag [id] = =1 then

[3] Flag [id] = 0

[4] for all neighbours nid of id do

[5] if NW[nid] > NW[id]+NEW[nid] then

[6] begin ATOMIC

[7] NW[nid]=(NW[id] + NEW[id]

[8] end ATOMIC

[9] Lock = 1

[10] Flag [EEN[nid]] = 1

[11] end if

[12] end for

[13] end if

end

7. Results and Analysis

This section discusses the experimental setup used for

result evaluation, type of test graph and finally shows

the results of the proposed parallel batch dynamic

algorithm, its comparison with the best serial algorithm

and analysis of results.

7.1. Experimental Setup

Results are evaluated on a system with following

configurations:

CPU: Intel(R) Xeon(R) E5-2650 @ 2.00 GHz

RAM: 24 GB

OS: Windows 7 professional

GPU: Tesla C2075 (448 cores), compute capability 2.0

Language: CUDA 5

Programming Interface: Visual studios 2010

7.2. Test Graphs

To test the performance of proposed implementation

different real world graphs available on the Stanford

graph dataset [22] are used. The real world graphs that

have been used are: Internet graphs in which nodes

represent computers and edges represent

communication; Web graphs in which nodes represent

web pages and edges are hyperlinks; Social network

graphs are online social networks where edges

represent interconnections between people; and road

network graph nodes represent the interconnections of

roads and edges represent the roads connecting the

interconnection. These graph instances have sizes up to

5.5 million edges, directed and are assigned positive

edge weights ranging from 1 to 10.

7.3. Results

In this section, a comparison of the proposed parallel

implementations of the dynamic SSSP algorithm with

the serial dynamic SSSP algorithm is presented. The

serial batch dynamic SSSP algorithm [2] shows best

serial results is implemented in C language.

Performance of proposed implementations are

evaluated for three different cases: first, when the

weight increase for those edges which are affecting

approximately 10 % nodes weight in given graph;

Parallel Batch Dynamic Single Source Shortest Path Algorithm and ... 223

second is when weight increase for those edges which

are affecting approximately 5000 nodes weight in

given graph; and last is when weight decrease for fifty

random edges in any graph.

 To find how many nodes have a minimum weight

dependent on any edge in the graph, proposed

algorithm first calculates the responsible edge and

node for each node in SPT and then travers the SPT by

using any node as a root node. Nodes present in the

sub-tree after considering any node as a root node are

affected nodes after increasing the weight of root

node’s responsible edge.

Figure 2. Results for 10% affected nodes.

Figure 2 shows the results of the proposed parallel

dynamic SSSP algorithm (PDSSSP), the parallel SSSP

algorithm [16] (PSSSP) and the serial dynamic SSSP

algorithm [2] (SDSSSP) calculations after increasing

the edge weight of those edges which affect the

approximately 10% nodes weight in the SSSP of the

corresponding graph. The proposed PDSSSP algorithm

gives double the speed increase of the PSSSP

algorithm and up to a 20-fold increase as compared to

the SDSSS algorithm. The main reason of speedup is

parallel recalculation of all affected node’s weight

using constrain based Bellman Ford algorithm [16].

This algorithm has added two conditions simple

Bellman Ford algorithm [3, 14]; first condition relaxes

only those edges in any iteration whose start node

weight was modified in the last iteration, and second

condition relaxes the edges until there is a weight

change for at least one node in the last iteration.

Figure 3 shows the results for the PDSSSP and

SDSSSP algorithm calculations after the edge weight

increase of the edges which affect approximately 5000

nodes weight in the corresponding graph. The serial

dynamic SSSP algorithm takes a similar time for re-

computing the node weight of 5000 nodes in any

graph, as it has to do approximately equal amount of

work for all graphs. But the proposed parallel dynamic

SSSP algorithm takes a different amount of time for

different graphs to re-compute the node weights of

5000 nodes. This re-computing time depends on the

number of nodes present in the graph because the

number of threads created for any graph in the final

computation depends on the number of nodes in the

graph. If the number of threads is greater but they have

to process the same number of nodes as fewer threads,

then he former case will require more processing time

because the system will take the same number of

iterations but in each iteration it will take more time to

manage the large number of threads.

Figure 3. Results for 5000 affected nodes.

Table 1. Results edge weight decrease.

Graph Size

No. of edges

Time in milliseconds % of node

weight affected PDSSSP SDSSSP

.94M 8.4 160 19%

1.4M 6.3 123 6%

2.3M 17.2 117 11%

3.2M 12.3 87 17%

4.8M 24.6 93 21%

5.1M 18.7 234 7%

Table 1 shows the results for the proposed parallel

dynamic SSSP and serial dynamic SSSP algorithms

after randomly reducing the edge weight of fifty edges

of any graph. It also shows how many nodes weights

are affected after this edge weight minimization. In the

case of edge weight decrease it may be possible that

dynamic SSSP processing time for small graphs will be

greater than for any large graph because we have no

idea how many nodes will be affected due to these

edge weight decreases in any graph before re-

calculating the SSSP.

 Basically, speed-up depends on the structure and

out-degree of a graph. As the number of vertices

increases and the degree per vertex declines, then the

level of a graph increases. As algorithms are

dynamically updating an edge, when the level of a

graph increases, more edges have to be updated, with

the results that, for sequential implementation, more

work has to be done while, for parallel implementation,

all work is performed in a parallel manner. Hence, a

greater speed increase can be achieved with parallel

implementation.

8. Conclusions and Future Work

This paper has proposed first parallel batch dynamic

SSSP algorithm for GPU based machine and shown its

implementation using CUDA. Time Complexity

analysis of proposed algorithm has shown with respect

224 The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019

to possible affected nodes with |E| processors in

parallel environment. Experimental results are shown

for NVIDIA’S Telsa C2075 GPU and analysed for

three different cases. Proposed algorithm has given up

to 20 times speed up as compare to serial algorithm

when the approximately 10% nodes weight are

affected. When the fixed number of nodes has affected

in different graph the parallel solution has taken time

according to the size of the graph, so in future to solve

this problem an implementation can be proposed to

create the number of threads equal to the number of

affected nodes in the graph.

References

[1] Barbehenn M. and Hutchinson S., “Efficient

Search and Hierarchical Motion Planning by

Dynamically Maintaining Single-Source Shortest

Paths Tree,” IEEE Transactions on Robotics and

Automation, vol. 11, no. 2, pp. 198-214, 1995.

[2] Bauer R. and Wagner D., “Batch Dynamic

Single-Source Shortest Path Algorithms: An

Experimental Study,” in Proceedings of

International Symposium on Experimental

Algorithms, Berlin, pp. 51-62, 2009.

[3] Bellman R., “On A Routing Problem,” Quarterly

of Applied Mathematics, vol. 16, no. 1, pp. 87-90,

1958.

[4] Brodal G., Traff J., and Zarolingis C., “A parallel

Priority Data Structure With Applications,” in

Proceedings of 11th International Parallel

Processing Symposium, Geneva, pp. 689-693,

1997.

[5] Buluc A., Gilberta J., and Budaka C., “Solving

Path Problems on the GPU,” Parallel Computing,

vol. 36, no. 5-6, pp. 241-253, 2010.

[6] Bura W. and Boryczka M., “The Parallel Ant

Vehicle Navigation System with CUDA

Technology,” in Proceedings of International

Conference on Computational Collective

Intelligence, Gdynia, pp. 505-514, 2011.

[7] Buriol L., Resende M., and Thorup M.,

“Speeding Up Dynamic Shortest-Path

Algorithms,” INFORMS Journal on Computing,

vol. 20, no. 2, pp. 191-204, 2008.

[8] Crauser A., Mehlhom K., Meyer U., and Sanders

P., “A Parallelization of Dijkstra’s Shortest Path

Algorithm,” in Proceedings of 23rd International

Symposium on Mathematical Foundations of

Computer Science, Brno, pp. 722-732, 1998.

[9] Crobak J., Berry J., Madduri K., and Bader D.,

“Advanced Shortest Paths Algorithms on a

Massively-Multithreaded Architecture,” in

Proceedings of IEEE International Parallel and

Distributed Processing Symposium, Rome, pp. 1-

8, 2007.

[10] Dashora S. and Khare N., “Implementation of

Graph Algorithms over GPU: A Comparative

Analysis,” in Proceedings of IEEE Students'

Conference on Electrical, Electronics and

Computer Science, Bhopal, pp. 1-8, 2012.

[11] Delling D. and Wagner D., “Landmark-Based

Routing in Dynamic Graphs,” International

Workshop on Experimental and Efficient

Algorithms, Rome, pp. 52-65, 2007.

[12] Dijkstra E., “A Note on Two Problems in

Connexion with Graphs,” Numerische

Mathematik, vol. 1, no. 1, pp. 269-271, 1959.

[13] Eklund P., Kirkby S., and Pollitt S., “A Dynamic

Multi-Source Dijkstra's Algorithm for Vehicle

Routing,” in Proceedings of Australian New

Zealand Conference on Intelligent Information

Systems, Adelaide, pp. 329-333, 1996.

[14] Ford L. and Fulkerson D., Flows in Network,

Princeton University Press, 2010.

[15] Frigioni D., Spaccamela A., and Nanni U., “Fully

Dynamic Algorithms for Maintaining Shortest

Paths Trees,” Journal of Algorithms, vol. 34, no.

2, pp. 251-281, 2000.

[16] Harish P. and Narayanan P., “Accelerating Large

Graph Algorithms on the GPU Using CUDA,” in

Proceedings of International Conference on

High-Performance Computing, Goa, pp. 197-

208, 2007.

[17] Jang H., Park A., and Jung K., “Neural Network

Implementation Using CUDA and OpenMP,” in

Proceedings of Digital Image Computing:

Techniques and Applications, Canberra, pp. 155-

161, 2008.

[18] Kadhar M., “A Deadlock-Free Dynamic

Reconfiguration Protocol for Distributed Routing

on Interconnection Networks,” The International

Arab Journal of Information Technology, vol. 11,

no. 6, pp. 616-622, 2014.

[19] Katz G. and Kider J., “All Pairs Shortest-Paths

for Large Graphs on the GPU,” in Proceedings of

23rd ACM SIGGRAPH/ EUROGRAPHICS

Symposium Graphics Hardware, Sarajevo, pp.

47-55, 2008.

[20] King V. and Thorup M., “A Space Saving Trick

for Directed Dynamic Transitive Closure And

Shortest Path Algorithms,” in Proceedings of

International Computing and Combinatorics

Conference, Guilin, pp. 268-277, 2001.

[21] Lattanzi S., Panconesi A., and Sivakumar D.,

“Milgram-routing in Social Networks,” in

Proceedings of 20th International Conference on

World Wide Web, Hyderabad, pp. 725-734, 2011.

[22] Leskovec J., “Stanford Large Network Dataset

Collection,” Stanford University,

http://snap.stanford.edu/data/, Last Visited, 2014.

[23] Li F., Klette R., and Morales S., “An

Approximate Algorithm for Solving Shortest

Path Problems for Mobile Robots or Driver

Assistance,” in Proceedings of Intelligent

Vehicles Symposium, Xi'an, pp. 42-47, 2009.

http://snap.stanford.edu/data/

Parallel Batch Dynamic Single Source Shortest Path Algorithm and ... 225

[24] Martín P., Torres R., and Gavilanes A., “CUDA

Solutions for the SSSP Problem,” in Proceedings

of International Conference on Computational

Science, Baton Rouge, pp. 904-913, 2009.

[25] Matsumoto K., Nakasato N., and Sedukhin S.,

“Blocked All-Pairs Shortest Paths Algorithm for

Hybrid CPU-GPU System,” in Proceedings of

13th IEEE International Conference on High

Performance Computing and Communications,

Banff, pp. 145-152, 2011.

[26] Misra S. and Oommen B., “Dynamic Algorithms

for the Shortest Path Routing Problem: Learning

Automata-Based Solutions,” IEEE Transactions

on Systems, Man, and Cybernetics, vol. 35, no. 6,

pp. 1179-1192, 2005.

[27] Narva ́ez P., Siu K., and Tzeng H., “New

Dynamic Algorithms for Shortest Path Tree

Computation,” IEEE/ACM Transactions on

Networking, vol. 8, no. 6, pp. 734-746, 2000.

[28] Nickolls J. and Dally W., “The GPU Computing

Era,” IEEE Micro, vol. 30, no. 2, pp. 56-69,

2010.

[29] Nishizeki T., Tamassia R., and Wagner D.,

“Graph Algorithms and Applications,” Dagstuhl-

Seminar report, Schloss Dagstuhl, 1998.

[30] NVIDIA Corporation, “CUDA C programming

guide (2013),”

http://docs.nvidia.com/cuda/pdf/CUDA_C_Progr

amming_Guide.pdf, Last Visited, 2014.

[31] Ramalingam G. and Reps T., “On the

Computational Complexity of Dynamic Graph

Problems,” Theoretical Computer Science, vol.

158, no. 1-2, pp. 233-277, 1996.

[32] Reps T. and Ramalingam G., “An Incremental

Algorithm for a Generalization of the Shortest-

Path Problem,” Journal of Algorithms, vol. 21,

no. 2, pp. 267-305, 1996.

[33] Sancı S. and I¸sler V., “A Parallel Algorithm for

UAV Flight Route Planning on GPU,”

International Journal of Parallel Programming,

vol. 39, no. 6, pp. 809-837, 2011.

[34] Singh D. and Khare N., “Parallel Implementation

of the Single Source Shortest Path Algorithm on

CPU-GPU Based Hybrid System,” International

Journal of Computer Science and Information

Security, vol. 11, no. 9, pp. 74-80, 2013.

[35] Sintorn E. and Assarsson U., “Fast Parallel GPU-

Sorting Using a Hybrid Algorithm,” Journal of

Parallel and Distributed Computing, vol. 68, no.

10, pp. 1381-1388, 2008.

[36] Tang Y., Zhang Y., and Chen H., “Parallel

Shortest Path Algorithm Based On Graph-

Partitioning and Iterative Correcting,” in

Proceedings of 10th IEEE International

Conference on High Performance Computing

and Communications, Dalian, pp. 155-161, 2008.

[37] Tran Q., “Designing Efficient Many-Core

Parallel Algorithms for All-Pairs Shortest-Paths

Using CUDA,” in Proceedings of 7th

International Conference on Information

Technology: New Generations, Las Vegas, pp. 7-

12, 2010.

Dhirendra Singh received his PhD

degree in computer science and

engineering from the Maulana Azad

National Institute Technology,

Bhopal, India in 2015. After his Post

graduation, he has worked as

Software Developer in NIIT

Technologies Ltd., New Delhi, India. Currently he is

working as Assistant Professor in the department of

Computer Science and Engineering, Maulana Azad

National Institute Technology, Bhopal, India.

Nilay Khare is Ex-HOD of the

department of Computer Science

and Engineering, Maulana Azad

National Institute Technology,

Bhopal, India. He is having more

than 27 years of teaching and

research experience. Currently he is

working as Associate Professor in the department of

Computer Science and Engineering, Maulana Azad

National Institute Technology, Bhopal, India. His

research interests include algorithms, theoretical

computer science and VLSI design.

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

